63 research outputs found

    Asset Pricing Under Information with Stochastic Volatility

    Get PDF
    Based on a general specification of the asset specific pricing kernel, we develop a pricing model using an information process with stochastic volatility. We derive analytical asset and option pricing formulas. The asset prices in this rational expectations model exhibit crash-like, strong downward movements. The resulting option pricing formula is consistent with the strong negative skewness and high levels of kurtosis observed in empirical studies. Furthermore, we determine credit spreads in a simple structural model.

    High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions

    Get PDF
    We present a high-order compact finite difference approach for a rather general class of parabolic partial differential equations with time and space dependent coefficients as well as with mixed second-order derivative terms in n spatial dimensions. Problems of this type arise frequently in computational fluid dynamics and computational finance. We derive general conditions on the coefficients which allow us to obtain a high-order compact scheme which is fourth-order accurate in space and second-order accurate in time. Moreover, we perform a thorough von Neumann stability analysis of the Cauchy problem in two and three spatial dimensions for vanishing mixed derivative terms, and also give partial results for the general case. The results suggest unconditional stability of the scheme. As an application example we consider the pricing of European Power Put Options in the multidimensional Black-Scholes model for two and three underlying assets. Due to the low regularity of typical initial conditions we employ the smoothing operators of Kreiss et al. to ensure high-order convergence of the approximations of the smoothed problem to the true solution

    A Quasilinear Parabolic Equation with Quadratic Growth of the Gradient modeling Incomplete Financial Markets

    Get PDF
    We consider a quasilinear parabolic equation with quadratic gradient terms. It arises in the modelling of an optimal portfolio which maximizes the expected utility from terminal wealth in incomplete markets consisting of risky assets and non-tradable state variables. The existence of solutions is shown by extending the monotonicity method of Frehse. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution. The influence of the non-tradable state variables on the optimal value function is illustrated by a numerical example.Quasilinear PDE, quadratic gradient, existence and uniqueness of solutions, optimal portfolio, incomplete market

    International and Domestic Trading and Wealth Distribution

    Get PDF
    We introduce and discuss a kinetic model for wealth distribution in a simple market economy which is built of a number of countries or social groups. Our approach is based on the model with risky investments introduced by Cordier, Pareschi and one of the authors in [13] and borrows ideas from the kinetic theory of mixtures of rarefied gases. Wealth is exchanged by individuals inside these countries (domestic trade) as well as in between different countries (international trade). Under a suitable scaling we derive a system of Fokker-Planck type equations and discuss its extension to a two-dimensional model with distributed trading propensity. Theoretical and numerical results for two groups show that the wealth distribution develops a bimodal (and in general, a polymodal) shape.

    Kinetic equations modelling wealth redistribution: a comparison of approaches

    Get PDF
    Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply, e.g., to the market model with risky investments [S. Cordier, L. Pareschi, and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions

    A Boltzmann-type Approach to the Formation of Wealth Distribution Curves

    Get PDF
    Kinetic market models have been proposed recently to account for the redistribution of wealth in simple market economies. These models allow to develop a qualitative theory, which is based on methods borrowed from the kinetic theory of rarefied gases. The aim of these notes is to present a unifying approach to the study of the evolution of wealth in the large- time regime. The considered models are divided into two classes: the first class is such that the societyā€™s mean wealth is conserved, while for models of the second class, the mean wealth grows or decreases exponentially in time. In both cases, it is possible to classify the most important feature of the steady (or self-similar, respectively) wealth distributions, namely the fatness of the Pareto tail. We shall also discuss the tailsā€™ dynamical stability in terms of the model parameters. Our results are derived by means of a qualitative analysis of the associated homogeneous Boltzmann equations. The key tools are suitable metrics for probability measures, and a concise description of the evolution of moments. A recent extension to economies, in which different groups of agents interact, is presented in detail. We conclude with numerical experiments that confirm the theo- retical predictions.

    High order compact finite difference schemes for a nonlinear Black-Scholes equation

    Get PDF
    A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. In particular, the compact schemes of Rigal are generalized. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more eĀ±cient than the considered classical schemes.Option pricing, transaction costs, parabolic equations, compact finite difference discretizations

    Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation

    Get PDF
    A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.High-order compact finite differences, numerical convergence, viscosity solution, financial derivatives
    • ā€¦
    corecore